• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Framework for Multi-Asset Comparison and Rapid Down-selection for Earth Observation Missions

    Thumbnail
    View/Open
    framework_for_multi_asset_comparison_and_rapid_down_selection_for_Earth_observation_missions.pdf (2.740Mb)
    Date
    2019
    Author
    Gilleron, Jerome
    Muehlberg, Marc
    Payan, Alexia
    Choi, Youngjun
    Briceno, Simon
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    Observing the Earth, whether it be from space or from the air, has become easier in recent years with the advent of new space-borne and airborne technologies. First, satellites constantly provide data about almost any point on the globe with varying resolutions and in various spectral bands. Second,Unmanned Aerial Vehicles (UAV) are becoming more readily accessible to the public and may be rapidly deployed to take high resolution images of ground features or areas of interest. Third, manned aircraft may be used to image large areas of land at a higher resolution than satellites and have been used regularly in disaster monitoring and surveillance missions. However, when multiple heterogeneous assets compete to perform a given aerial imaging mission, deciding which asset is better suited and/or less costly to operate in a timely manner is challenging. Every acquisition mode is different, resolution values are computed differently and there currently does not exist a common framework to compare UAV, manned aircraft and satellites. To address this challenge, this paper describes a methodology to rapidly compare various types of aerial assets (such as UAVs and manned aircraft) and space assets (such as satellites) to decide which one would be better able to perform an Earth observation mission depending on a set of requirements. To demonstrate the proposed methodology, this paper executes numerical simulations with three different representative scenarii in California.
    URI
    http://hdl.handle.net/1853/62027
    Collections
    • Aerospace Systems Design Laboratory Publications [303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology