• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Plasmonic nanostructures and metamaterials for nanoscale light-matter interaction

    Thumbnail
    View/Open
    SHAMSMOUSAVI-DISSERTATION-2018.pdf (4.386Mb)
    Date
    2018-12-04
    Author
    Shams Mousavi, Seyed Hamed
    Metadata
    Show full item record
    Abstract
    The objective of this dissertation is to study the light-matter interaction phenamena at nanoscale in the presence of plasmonic nanostructures and metamaterials. Using the principles of nano-optics, a range of plasmonic nanodevices are developped for molecular sensing, nonlinear optics and surface plasmon lasing. This theoretical and experimental investigation is further extended by studying the effect of plasmon tunneling in sub-nanometer distances and light-matter interaction in atomically thin semiconductors adjacent to plasmonic nanostructures. More specifically, chemically synthesized plasmonic nanocube dimers and chains are studied for ultrasensitive molecular sensing using the wavelength shift of their localized surface plasmon resonance. The effect of interparticle spacing and relative orientation of the nanocubes in the nanocube chains has also been analyzed. The band-edge lattice plasmon waves in plasmonic nanoantenna arrays have been studied and utilized for surface-enhanced Raman spectroscopy. Superchiral spectroscopy at the molecular level is demonstrated using a novel three-dimensional chiral metamaterial. Furthermore, surface-enhanced second harmonic generation in coupled plasmonic nanostructures that support sharp Fano-type resonance features, is studied theoretically and experimentally. Finally, a plasmonic nanolaser incorporating a plasmonic nanocavity and a monolayer of transition metal dichalcogenide is developed.
    URI
    http://hdl.handle.net/1853/62184
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology