• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strategies for metallic nanoparticles, metal chalcogenide nanocrystals and perovskite quantum dots and their optical and optoelectronic properties

    Thumbnail
    View/Open
    YOON-DISSERTATION-2018.pdf (7.590Mb)
    Date
    2018-10-31
    Author
    Yoon, Young Jun
    Metadata
    Show full item record
    Abstract
    Nanocrystals with precisely tuned dimensions, spatial compositions, and surface chemistry offer unique properties that may not be realized otherwise. This dissertation takes on two distinct preparative approaches to craft such nanocrystals and explore their unique optical and optoelectronic properties. The first approach capitalizes on star-like copolymers with distinct polymer blocks as nanoreactors to create nanostructured materials with precisely tuned dimensions and enhanced stability that cannot be achieved via conventional ligand-assisted methods. I synthesized PS-capped gold nanoparticles (PS-capped Au NPs), PS-capped silver nanoparticles (PS-capped Ag NPs) and PS-capped all-inorganic perovskite quantum dots (PS-capped CsPbX3 QD) with tailored dimensions that are intimately and permanently tethered with polymers by employing rationally designed star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) as nanoreactors. By synthesizing the copolymer blocks with low polydispersity via atom transfer radical polymerization (ATRP), I accurately controlled the size of PS-capped Au NPs, PS-capped Ag NPs, and PS-capped CsPbX3 QDs, thus achieving strict control over light-harvesting (for Au NPs, Ag NPs and CsPbX3 QDs) and emission (for CsPbX3 QDs) at desired wavelengths in the visible region. Moreover, by manipulating the length of permanently tethered polymers, I improved their colloidal stability (for Au NPs, Ag NPs and CsPbX3 QDs) as well as water stability (for CsPbX3 QDs). It is important to note that each PS-capped CsPbX3 QD, for the first time, carries a layer of protective hydrophobic PS chains that can be readily regulated to any desired length during the ATRP of styrene monomers, thus allowing strikingly improved water and colloidal stabilities. The second approach utilizes cation-exchange of well-defined inorganic QDs as nanotemplates to yield new QDs that maintain the same anionic framework of the original inorganic nanotemplates. I demonstrated the precision synthesis of composition gradient PbSe/PbSe1-ySy/PbS QDs by capitalizing on cation-exchange of pre-synthesized CdSe/Cd1-xZnxSe1-ySy/ZnS QDs as nanotemplates. The obtained PbSe/PbSe1-ySy/PbS QDs had PL that range between 1700 nm to 2300 nm (SWIR region) that was precisely tunable by controlling the thickness of PbS shell, which can be easily tailored by the cation-exchange time. Moreover, I showed that the initial CdSe/Cd1-xZnxSe1-ySy/ZnS QD dimensions can be utilized to accurately control the optical properties of PbSe/PbSe1-ySy/PbS QDs in the IR region. It is worth noting that the PbSe/PbSe1-ySy/PbS QDs have excellent colloidal stability (> 6 months) as well as oxidative stability (> 50 days).
    URI
    http://hdl.handle.net/1853/62217
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology