• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of ribonucleotides embedded in DNA

    Thumbnail
    View/Open
    BALACHANDER-DISSERTATION-2018.pdf (5.517Mb)
    Date
    2018-11-05
    Author
    Balachander, Sathya
    Metadata
    Show full item record
    Abstract
    Ribonucleotides (rNMPs) are the most abundant non-standard nucleotides in genomic DNA. Presence of rNMPs embedded in DNA alters the DNA structure, function and their properties, which ultimately may lead to genomic instability in the form of mutagenesis, replication stress and DNA breaks. Despite abundant evidence of the negative impact of rNMPs in DNA, not much is known about location and identity of rNMPs incorporated in genomic DNA. Here, our aims are to study the genome-wide distribution of rNMPs, and to characterize DNA repair mechanisms responsible for removal of rNMPs and modified rNMPs. To better understand the profile of rNMPs in DNA, we modified our current method, ribose-seq, to generate a robust and effective technique to capture rNMPs incorporated in DNA. Using our modified ribose-seq, in addition to mapping rNMPs in ribonuclease (RNase) H2 null cells at a much higher efficiency, we also determined the rNMP incorporation pattern from wild type DNA of budding yeast S. cerevisiae and S. paradoxus, and fission yeast S. pombe. Additionally, we explored the role of RNase H2 in cleaving modified rNMPs, such as abasic rNMPs. To study if RNase H2 can cleave at abasic rNMPs in DNA, we investigated whether eukaryotic RNase H2 is capable of recognizing abasic rNMPs. Also, we investigated the role of base excision repair (BER) enzymes in cleaving rNMPs and abasic rNMPs. We identity the role of apurinic/apyrimidinic endonuclease 1 (APE1) in cleaving abasic rNMPs, thus revealing a novel function of the BER pathway.
    URI
    http://hdl.handle.net/1853/62220
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Biology Theses and Dissertations [464]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology