• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, synthesis and characterization of thiazole-based conjugated polymers and their applications to n-channel organic electronics

    Thumbnail
    View/Open
    YUAN-DISSERTATION-2018.pdf (16.09Mb)
    Date
    2018-11-09
    Author
    Yuan, Zhibo
    Metadata
    Show full item record
    Abstract
    In the past several decades, π-conjugated organic and polymeric semiconducting materials have attracted significant attention due to their promising electronic and optoelectronic properties. Therefore, their potential in applications to electronic and optoelectronic devices have been investigated, including applications in organic field-effect transistors (OFETs), organic photovoltaics (OPVs), and organic light-emitting diodes (OLEDs), etc. In the past two decades, a great number of conjugated polymers with mobility surpassing that of amorphous silicon have been reported. However, most of these high-mobility conjugated polymers are either hole transport or ambipolar (electron and hole transport) semiconductors; only a few electron transport conjugated polymers with high electron mobility (µe) have been reported to date. The development of high-mobility electron transporting conjugated polymers falls behind advances in their hole transporting counterparts. However, high‐performance pure electron-transporting conjugated polymers for pure n-channel organic electronic devices are highly desirable in applications such as metal‐oxide‐semiconductor (CMOS)‐like complementary circuits, organic thermoelectrics, and all‐polymer solar cells. Among many electron-poor units, thiazoles stand out as a promising building block for high performance organic semiconductors. This dissertation discusses the development of thiazole-based π-conjugated semiconducting polymers to enhance the electron field-effect mobilities by advancing intra- and inter-molecular interactions between polymer chains, and the enhancement of ambient stability by decreasing the energy levels of frontier molecular orbitals. The structure-process-property relationships of thiazole-based n-channel conjugated polymers are studied in this thesis.
    URI
    http://hdl.handle.net/1853/62238
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemistry and Biochemistry Theses and Dissertations [1525]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology