• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Diurnal and seasonal variability of Uranus’ magnetosphere under different IMF

    Thumbnail
    View/Open
    CAO-DISSERTATION-2018.pdf (64.57Mb)
    Date
    2018-11-13
    Author
    Cao, Xin
    Metadata
    Show full item record
    Abstract
    The magnetosphere of Uranus is far from well known since there was only one fly-by measurement in history. In order to study the magnetosphere and its coupling mechanism with the solar wind, we used our multifluid magnetohydrodynamics (MHD) model [Cao and Paty, 2017] to successfully simulate the variation of the global magnetosphere of Uranus and have predicted potential favorable reconnection locations. We investigated the existence of a “switch-like” magnetosphere at Uranus for both equinox and solstice seasons, where the planetary rotation drives the interchange between an open magnetosphere and a closed magnetosphere each Uranus day. This periodic reconnection is predicted to occur upstream of the magnetopause, with a frequency that corresponds to the planetary rotation (once per 17.24 hours). The locations of the bow shock and magnetopause in our model are validated against measurements made by Voyager 2. In examining the evolution of the magnetic field configuration along with that of high plasma beta regions, which in combination indicate where the system is favorable for reconnection, we found that the occurrence of reconnection is highly dependent on the rotation of the planetary magnetic field in both equinox and solstice seasons. These periodic reconnection events in our simulation support the hypothesis of a periodic “switch-like” magnetosphere at Uranus during different seasons. We then investigated the diurnal and seasonal variations of the magnetopause boundary under different Interplanetary Magnetic Field (IMF) orientations, combined with Voyager 2’s measurement. We quantitatively analyzed the characteristics and variability of Uranus’ magnetopause and cusp in terms of the subsolar’s standoff distance, the flaring parameter and the cusp indentation, which give us an initial intuition of the asymmetric structure of the magnetopause. Our results show that the asymmetry of the magnetopause is highly dependent on the rotation of Uranus under specific IMF orientations. The shape of the magnetopause is also affected by the off-centered dipole moment. Our model can be applied to other planets with different magnetic geometries, such as the exoplanets and the Neptune-Triton system.
    URI
    http://hdl.handle.net/1853/62244
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology