• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving in-house testing using field execution data

    Thumbnail
    View/Open
    WANG-DISSERTATION-2019.pdf (1.291Mb)
    Date
    2019-08-14
    Author
    Wang, Qianqian
    Metadata
    Show full item record
    Abstract
    Software testing is today the most widely used approach for assessing and improving software quality. Despite its popularity, however, software testing has a number of inherent limitations. First, due to resource limitations, in-house tests necessarily exercise only a tiny fraction of all the possible behaviors of a software system. Second, testers typically select this fraction of behaviors to be tested based either on some (more or less rigorous) selection criteria or on their assumptions, intuition, and experience. As a result, in-house tests are typically not representative of the software behavior exercised by real users, which ultimately results in the software behaving incorrectly and failing in the field, after it has been released. The overarching goal of my dissertation is to address this problem and improve the effectiveness of in-house testing. To this end, I proposed a set of techniques for measuring and bridging the gap between in-house tests and field executions. My first technique allows for quantifying and analyzing the differences between behaviors exercised in-house and in the field. My second approach leverages the differences identified by my first technique to generate, using a guided symbolic analysis, test inputs that mimic field behaviors and can be added to existing in-house test suites. Finally, my third approach leverages the executions observed in the field to improve symbolic input generation and make test generation more effective. The evaluation shows that my techniques can effectively generate test inputs using field execution data and make in-house testing more representative of field executions.
    URI
    http://hdl.handle.net/1853/62267
    Collections
    • College of Computing Theses and Dissertations [1156]
    • Georgia Tech Theses and Dissertations [23406]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology