• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Moving towards stable metal halide perovskite solar cells for use in low-earth orbit

    Thumbnail
    View/Open
    RAGER-THESIS-2019.pdf (1.839Mb)
    Date
    2019-08-21
    Author
    Rager, Matthew Scott
    Metadata
    Show full item record
    Abstract
    Perovskite solar cells have recently emerged as a new leader in the third-generation of photovoltaics. Additionally, this new technology has the potential for application in several areas, including aerospace. The light-absorbing material in perovskite solar cells is an organometal halide compound with the perovskite structure (ABX3) where various atoms can be combined and interchanged to tune the optoelectronic properties. Typically, the A site is filled by organic, small- molecule cations (e.g. methylammonium and formamdinium) and/or inorganic atoms (e.g. Cs or Rb), the B site is filled by metal atoms (e.g. Pb2+ or Sn2+), and halide anions (e.g. I- and Br+) fill the X site. In this study, I fabricated organic-inorganic (MAPbI3 and Cs0.05(MA0.17FA0.83)Pb(I0.83Br0.17)3 and all-inorganic (CsPbBr3) perovskite solar cells to improve the efficiency and stability with the goal of creating devices to operate in the low-Earth orbit environment. The harsh environment of space requires materials with good thermal stability due to large variations in temperature. The organic-inorganic solar cells are more efficient than all-inorganic, but the organic cation places limitations on the thermal stability of the material. Thus, all-inorganic perovskite solar cells (e.g. CsPbBr3) were fabricated and studied as the best candidates to survive the extreme conditions in low-Earth orbit.
    URI
    http://hdl.handle.net/1853/62280
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology