• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-infused security: Robust defense by bridging theory and practice

    Thumbnail
    View/Open
    CHEN-DISSERTATION-2019.pdf (17.04Mb)
    Date
    2019-09-20
    Author
    Chen, Shang-Tse
    Metadata
    Show full item record
    Abstract
    While Artificial Intelligence (AI) has tremendous potential as a defense against real-world cybersecurity threats, understanding the capabilities and robustness of AI remains a fundamental challenge. This dissertation tackles problems essential to successful deployment of AI in security settings and is comprised of the following three interrelated research thrusts. (1) Adversarial Attack and Defense of Deep Neural Networks: We discover vulnerabilities of deep neural networks in real-world settings and the countermeasures to mitigate the threat. We develop ShapeShifter, the first targeted physical adversarial attack that fools state-of-the-art object detectors. For defenses, we develop SHIELD, an efficient defense leveraging stochastic image compression, and UnMask, a knowledge-based adversarial detection and defense framework. (2) Theoretically Principled Defense via Game Theory and ML: We develop new theories that guide defense resources allocation to guard against unexpected attacks and catastrophic events, using a novel online decision-making framework that compels players to employ ``diversified'' mixed strategies. Furthermore, by leveraging the deep connection between game theory and boosting, we develop a communication-efficient distributed boosting algorithm with strong theoretical guarantees in the agnostic learning setting. (3) Using AI to Protect Enterprise and Society: We show how AI can be used in real enterprise environment with a novel framework called Virtual Product that predicts potential enterprise cyber threats. Beyond cybersecurity, we also develop the Firebird framework to help municipal fire departments prioritize fire inspections. Our work has made multiple important contributions to both theory and practice: our distributed boosting algorithm solved an open problem of distributed learning; ShaperShifter motivated a new DARPA program (GARD); Virtual Product led to two patents; and Firebird was highlighted by National Fire Protection Association as a best practice for using data to inform fire inspections.
    URI
    http://hdl.handle.net/1853/62296
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology