• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transient Surrogate Modeling for Thermal Management Systems

    Thumbnail
    View/Open
    Transient Surrogate Modeling for Thermal Management.pdf (1.665Mb)
    Date
    2020-01
    Author
    Van Zwieten, Andrew
    Cinar, Gokcin
    Garcia, Elena
    Gladin, Jonathan
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    In typical multidisciplinary design optimization problems, with varying missions, aerodynamic data, engine data, Thermal Management Systems (TMS), and other parameters it can take upwards of millions of runs to cover the full design space which result in extremely large computational burden, reducing the effectiveness of the design process. The objective of this work is to create a technical approach, leveraging existing concepts in surrogate modeling and other relevant fields, for the creation of a Transient TMS surrogate model. This work utilizes Design of Experiments to intelligently sample a model’s design space, surrogate modeling to enable instantaneous predictions, and state space modeling to allows surrogates to carry predictions forward. By leveraging these three components, a six step methodology was developed. This paper explains the developed methodology with an application on a notional Transient TMS. We first pre-process the time dependent data and possible correlations between input variables, then break down a set of input variables into a series of step functions which represent input schedules in a fraction of the time. We create Artificial Neural Network models to predict the future response of a metric of interest using the current response of both the input step functions and the corresponding output. We finally test whether the surrogates which were created with step functions could be used to predict the future response of the metric of interest for a full time trace of a sample aircraft mission. We show that this methodology yields acceptable predictions for both the partial and full time trace, with a maximum error of 5% and 10%, respectively.
    URI
    http://hdl.handle.net/1853/62476
    Collections
    • Aerospace Systems Design Laboratory Publications [297]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology