• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluating Optimal Paths for Aircraft Subsystem Electrification in Early Design

    Thumbnail
    View/Open
    Evaluating_Optimal_Paths_for_Aircraft_Subsystem_El.pdf (2.033Mb)
    Date
    2019-06
    Author
    Bendarkar, Mayank V.
    Rajaram, Dushhyanth
    Yu, Cai
    Briceno, Simon
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    The aerospace industry’s push for More-Electric Aircraft (MEA) has motivated numerous studies to quantify and optimize the impact of subsystem electrification in early design phases. Past studies on multi-objective optimization of MEA show a clear benefit over conventional architectures when no constraints are placed on the number of subsystems electrified at once. In reality however, aircraft manufacturers are more likely to progressively electrify subsystems over multiple aircraft generations. While step-by-step electrification may lead to sub-optimal intermittent MEA architectures when compared with scenarios with no such imposition on number of subsystems electrified, little or no literature was found to address the optimal paths towards such electrification changes. The primary aim of this study is the creation of a mathematically defensible methodology that provides decision makers with the ability to analyze several paths for electrification of MEA subsystems while considering Pareto-optimality and other metrics based on objectives of interest in early design. It is hoped that decision makers will be able to understand the performance trade-offs between different electrification paths under different scenarios, constraints, and uncertainties. The resulting methodology is demonstrated on an exercise in the electrification of Small Single Aisle aircraft.
    URI
    http://hdl.handle.net/1853/62527
    Collections
    • Aerospace Systems Design Laboratory Publications [285]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology