• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analytical modeling of condensation in microchannels with experimental validation

    Thumbnail
    View/Open
    KENIAR-DISSERTATION-2020.pdf (11.40Mb)
    Date
    2020-04-07
    Author
    Keniar, Khoudor
    Metadata
    Show full item record
    Abstract
    The condenser is a critical component in many energy intensive systems, such as HVAC, power plants, automobiles, and gas liquefaction plants. Microchannel geometries offer the potential for more efficient and compact configurations for condensers. Condensation in small hydraulic diameter channels yields high heat transfer coefficients, combined with larger surface area-to-volume ratios, leading to increased system-level efficiency. Internal convective condensation in microchannels typically occurs in annular and intermittent flow regimes. This study develops mechanistic models for these two regimes, validated through relevant experiments. A first principles model for laminar annular flow condensation is developed. It addresses some of the limitations of models found in the literature, which are mostly shape-specific or have assumptions that are not valid over broad ranges of geometries. The present model is developed for an arbitrary channel geometry. For intermittent flow, most of the models in the literature address the hydrodynamics, or at best, heat transfer without phase change, while others are highly empirical. Therefore, a framework for a mechanistic model of condensation in intermittent flow in microchannels is developed here. A transient Lagrangian bubble-tracking scheme is used. Experimental data are collected using synthetic refrigerants as working fluids on a test facility capable of measuring heat transfer at low mass fluxes. Data are collected using two microchannel shapes, square and circle with hydraulic diameters of 0.98 mm and 1.55 mm, respectively. The tests are conducted at different saturation temperatures, saturation-to-wall temperature differences, and a range of low mass fluxes. These results show reasonable agreement with the predictions of mechanistic models for annular and intermittent flows. The effects of operating conditions and channel geometry on condensation are discussed and interpreted based on the underlying flow mechanisms.
    URI
    http://hdl.handle.net/1853/62790
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology