• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of stability, waveform invariance, and non-reciprocity in nonlinear periodic structures

    Thumbnail
    View/Open
    FRONK-DISSERTATION-2020.pdf (7.691Mb)
    Date
    2020-04-13
    Author
    Fronk, Matthew David
    Metadata
    Show full item record
    Abstract
    Wave propagation in periodic structures and metamaterials has attracted the interest of the engineering community due to the presence of bandgaps, or forbidden frequency ranges of propagation, which have inspired devices to include filters, diodes, switches, and waveguides. Geometric and material nonlinearities present in periodic structures result in propagation features (e.g. direction, cut-off/cut-on frequencies, group velocity) dependent on wave amplitude, thereby providing an additional means to manipulate wave propagation. This work explores waveform invariance, stability, and non-reciprocity as enabled by nonlinear periodic structures. One-dimensional and two-dimensional discrete lattices are considered. Waveform invariance, in which a multi-harmonic solution persists without dispersing for all space and time, and plane wave stability, in which high amplitude waves undergo significant distortion of their spectral content, are informed by perturbation analysis of the lattices’ equations of motion. Extensions of the invariant plane wave solutions include special fundamental frequencies that avoid higher-harmonic generation and a slow-scale energy modulation between internally-resonant wave propagation modes. Non-reciprocity exploits a preferred energy transfer that occurs from large to small scales, coupled by strongly nonlinear restoring forces, to create a periodic lattice with highly asymmetrical wave propagation. Theoretical findings are validated with numerical simulations and experimental testing and may apply to damage detection, data encryption, and shock and vibration mitigation.
    URI
    http://hdl.handle.net/1853/62816
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology