• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The sound within: Learning audio features from electroencephalogram recordings of music listening

    Thumbnail
    View/Open
    VINAY-THESIS-2020.pdf (1.786Mb)
    Date
    2020-04-28
    Author
    Vinay, Ashvala
    Metadata
    Show full item record
    Abstract
    We look at the intersection of music, machine Learning and neuroscience. Specifically, we are interested in understanding how we can predict audio onset events by using the electroencephalogram response of subjects listening to the same music segment. We present models and approaches to this problem using approaches derived by deep learning. We worked with a highly imbalanced dataset and present methods to solve it - tolerance windows and aggregations. Our presented methods are a feed-forward network, a convolutional neural network (CNN), a recurrent neural network (RNN) and a RNN with a custom unrolling method. Our results find that at a tolerance window of 40 ms, a feed-forward network performed well. We also found that an aggregation of 200 ms suggested promising results, with aggregations being a simple way to reduce model complexity.
    URI
    http://hdl.handle.net/1853/62866
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Music Theses and Dissertations [14]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology