• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Small torsion generating sets for mapping class groups

    Thumbnail
    View/Open
    LANIER-DISSERTATION-2020.pdf (726.6Kb)
    Date
    2020-04-27
    Author
    Lanier, Justin Dale
    Metadata
    Show full item record
    Abstract
    A surface of genus g has many symmetries. These form the surface’s mapping class group Mod(S_g), which is finitely generated. The most commonly used generating sets for Mod(S_g) are comprised of infinite order elements called Dehn twists; however, a number of authors have shown that torsion generating sets are also possible. For example, Brendle and Farb showed that Mod(S_g) is generated by six involutions for g ≥ 3. We will discuss our extension of these results to elements of arbitrary order: for k > 5 and g sufficiently large, Mod(S_g) is generated by three elements of order k. Generalizing this idea, in joint work with Margalit we showed that for g ≥ 3 every non-trivial periodic element that is not a hyperelliptic involution normally generates Mod(S_g). This result raises a question: does there exist an N, independent of g, so that if f is a periodic normal generator of Mod(S_g), then Mod(S_g) is generated by N conjugates of f? We show that in general there does not exist such an N, but that there do exist universal bounds when additional conditions are placed on f.
    URI
    http://hdl.handle.net/1853/62870
    Collections
    • School of Mathematics Theses and Dissertations [399]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology