• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Data-Driven Approach using Machine Learning to Enable Real-Time Flight Path Planning

    Thumbnail
    View/Open
    AIAA_Aviation_2020_Junghyun_Kim.pdf (6.160Mb)
    Date
    2020-06
    Author
    Kim, Junghyun
    Briceno, Simon
    Justin, Cedric Y.
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    As aviation traffic continues to grow, most airlines are concerned about flight delays, which increase operating costs for the airlines. Since most delays are caused by weather, pilots and flight dispatchers typically gather all available weather information prior to departure to create an efficient and safe flight plan. However, they may have to perform in-flight re-planning because weather information can significantly change after the original flight plan is created. One potential issue is that weather forecasts being currently used in the aviation industry may provide relatively unreliable information and are not accessible fast enough so that it challenges pilots to perform in-flight re-planning more accurately and frequently. In this paper, we propose a data-driven approach that uses an unsupervised machine learning technique to provide a more reliable and up-to-date area of convective weather. To evaluate the proposed methodology, we collect the American Airlines flight (AA1300) information and actual weather-related data on October 6th, 2019. Preliminary results show that the proposed methodology provides a better picture of the nearby convective weather activity compared to the most well-known convective weather product.
    URI
    http://hdl.handle.net/1853/62915
    Collections
    • Aerospace Systems Design Laboratory Publications [308]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology