• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low-shot learning for object recognition, detection, and segmentation

    Thumbnail
    View/Open
    SHABAN-DISSERTATION-2020.pdf (15.90Mb)
    Date
    2020-05-17
    Author
    Shaban, Amirreza
    Metadata
    Show full item record
    Abstract
    Deep Neural Networks are powerful at solving classification problems in computer vision. However, learning classifiers with these models requires a large amount of labeled training data, and recent approaches have struggled to adapt to new classes in a data-efficient manner. On the other hand, the human brain is capable of utilizing already known knowledge in order to learn new concepts with fewer examples and less supervision. Many meta-learning algorithms have been proposed to fill this gap but they come with their practical and theoretical limitations. We review the well-known bi-level optimization as a general framework for few-shot learning and hyperparameter optimization and discuss the practical limitations of computing the full gradient. We provide theoretical guarantees for the convergence of the bi-level optimization using the approximated gradients computed by the truncated back-propagation. In the next step, we propose an empirical method for few-shot semantic segmentation: instead of solving the inner optimization, we propose to directly estimate its result by a general function approximator. Finally, we will discuss extensions of this work with the focus on weakly-supervised object detection when full supervision is not available for the few training examples.
    URI
    http://hdl.handle.net/1853/63599
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Interactive Computing Theses and Dissertations [144]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology