• Login
    View Item 
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Physics (SoP)
    • School of Physics Research Data
    • View Item
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Physics (SoP)
    • School of Physics Research Data
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative study of snake lateral undulation kinematics in model heterogeneous terrain dataset

    Thumbnail
    View/Open
    README.txt (1.754Kb)
    DATA_ICB2020.zip (404.2Mb)
    Date
    2020-09-24
    Author
    Schiebel, Perrin E.
    Hubbard, Alex M.
    Goldman, Daniel I.
    Metadata
    Show full item record
    Abstract
    Terrestrial organisms that use traveling waves to locomote must leverage heterogeneities to overcome drag on the elongate body. While previous studies illuminated how habitat generalist snakes self-deform to use rigid obstacles in the surroundings, control strategies for multi-component terrain are largely unknown. We compared the sand-specialist Chionactis occipitalis to a habitat generalist, Pantherophis guttatus, navigating a model terrestrial terrain-rigid post arrays on a low-friction substrate. We found the waveshapes used by the generalist were more variable than the specialist. Principal component analysis revealed that while the specialized sand-swimming waveform was always present on C. occipitalis, the generalist did not have a similarly pervasive low-dimensional waveshape. We expected the generalist to thus outperform the specialist in the arrays, but body slip of both species was comparable on level ground and in all trials the snakes successfully traversed the arena. When we further challenged the snakes to ascend an inclined lattice, the sand-specialist had difficulty maintaining contact with the obstacles and was unable to progress up the steepest inclines in the largest lattice spacings. Our results suggest that species adapted to different habitats use different control modalities-the specialist is primarily controlling its kinematics to achieve a target shape while, consistent with previous research, the generalist is using force control and self-deforms in response to terrain contacts. While both strategies allowed progress on the uninclined low-friction terrain with posts, the more variable waveshapes of the generalist may be necessary when faced with more challenging locomotor tasks like climbing inclines.
    URI
    http://hdl.handle.net/1853/63723
    https://doi.org/10.35090/g288-8k21
    Collections
    • School of Physics Research Data [8]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology