• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of Barrier Certificate-Based Controllers for Safe Robotic Task Execution

    Thumbnail
    View/Open
    SRINIVASAN-DISSERTATION-2020.pdf (12.53Mb)
    Date
    2020-11-03
    Author
    Srinivasan, Mohit
    Metadata
    Show full item record
    Abstract
    Safety critical control applications are ubiquitous, and hence synthesizing control algorithms with formal guarantees on safety and task satisfaction is of great importance. Tasks such as motion planning in unknown environments or planning for autonomous vehicles require controllers that satisfy a sequence of operations. In addition, the system must execute trajectories which are dynamically feasible, safe, and respect actuator constraints. In this thesis, a barrier certificate-based approach to synthesize controllers for safe robotic task execution is detailed. Control barrier functions have recently emerged as a tool to guarantee safety and reachability for dynamical systems, and they can be conveniently encoded in computationally efficient quadratic programs, making them amenable to real-time implementation. Leveraging these useful features, a framework for translating a given user defined specification to a sequence of barrier certificate-based controllers is introduced. The specification is formalized using linear temporal logic, a tool from formal methods literature. Executing such a sequence of controllers results in satisfaction of the given specification. Implementation results on a multi-robot test bed are provided. Furthermore, in order to guarantee task satisfaction, it is important to address certain assumptions that are prevalent in barrier functions-based literature such as feasibility of the quadratic programs, negligence of system volume when guaranteeing safety, and knowledge of the safe sets in unknown operating environments. We thus provide techniques to address the above assumptions and discuss simulation and experimental results to demonstrate the efficiency of the proposed approaches.
    URI
    http://hdl.handle.net/1853/64132
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology