• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Concolic Execution Tailored for Hybrid Fuzzing

    Thumbnail
    View/Open
    YUN-DISSERTATION-2020.pdf (1.144Mb)
    Date
    2020-12-01
    Author
    Yun, Insu
    Metadata
    Show full item record
    Abstract
    Recently, hybrid fuzzing, which combines fuzzing and concolic execution, has been highlighted to overcome limitations of both techniques. Despite its success in contrived programs such as DARPA Cyber Grand Challenge (CGC), it still falls short in finding bugs in real-world software due to its low performance of existing concolic executors. To address this issue, this dissertation suggests and demonstrates concolic execution tailored for hybrid fuzzing with two systems: QSYM and Hybridra. First, we present QSYM, a binary-only concolic executor tailored for hybrid fuzzing. It significantly improves the performance of conventional concolic executors by removing redundant symbolic emulations for a binary. Moreover, to efficiently produce test cases for fuzzing, even sacrificing its soundness, QSYM introduces two key techniques: optimistic solving and basic block pruning. As a result, QSYM outperforms state-of-the-art fuzzers, and, more importantly, it found 13 new bugs in eight real-world programs, including file, ffmpeg, and OpenJPEG. Enhancing the key idea of QSYM, we discuss Hybridra, a new concolic executor for file systems. To apply hybrid fuzzing for file systems, which are gigantic and convoluted, Hybridra employs compilation-based concolic execution to boost concolic execution leveraging the existing of source code. Moreover, Hybridra introduces a new technique called staged reduction, which combines existing heuristics to efficiently generate test cases for file systems. Consequently, Hybridra outperforms a state-of-the-art file system fuzzer, Hydra, by achieving higher code coverage, and successfully discovered four new bugs in btrfs, which has been heavily tested by other fuzzers.
    URI
    http://hdl.handle.net/1853/64153
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computer Science Theses and Dissertations [79]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology