• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low-Voltage Soft-Switching Solid-State Transformer (S4T) Enabled by the Synchronous Reverse Blocking Switch

    Thumbnail
    View/Open
    MARELLAPUDI-THESIS-2020.pdf (31.97Mb)
    Date
    2020-12-04
    Author
    Marellapudi, Aniruddh
    Metadata
    Show full item record
    Abstract
    The objective of this research is to demonstrate a high-efficiency, low-voltage Soft-Switching Solid-State Transformer (S4T) enabled by the Synchronous Reverse Blocking (RB) Switch, a patent-pending method to seamlessly integrate dual-active-switch structures into the S4T topology to minimize conduction losses in low-voltage, high-current applications. The S4T is a universal converter with the ability to interface single-phase, three-phase, and DC sources, and features bidirectional power transfer, buck-boost functionality, high-frequency isolation, low electromagnetic interference (EMI) through controlled dv/dt, and zero-voltage switching (ZVS) operation for all main devices over the entire load range to minimize switching losses. Significant success has been achieved in applying the S4T to industrial voltages (600 VAC and 1000 VDC) and medium voltage AC and DC (MVDC and MVAC) through the use of 3.3 kV silicon-carbide (SiC) devices and series-stacking of S4T modules. However, applying the topology to interface with low-voltage, high-current sources and loads has been challenging due to the high conduction losses associated with conventional reverse blocking switch structures composed of one active switching device, such as an IGBT or a MOSFET, in series with a diode, usually a SiC Schottky diode. Replacing the conventional RB switch structure with a dual-active-switch configuration, specifically one composed of two low on-resistance N-channel MOSFETs, presents an opportunity to significantly reduce semiconductor conduction losses and increase converter efficiency. However, as the PN-junction MOSFET body diode replaces the series SiC Schottky diode of conventional RB structures, body diode reverse recovery must be mitigated to prevent large device voltage stresses, increased device losses, additional EMI, and reduced converter reliability. This thesis presents the device-level and system-level validation of the Synchronous Reverse Blocking Switch within the S4T, showcasing the ability of the method to significantly reduce conduction losses while also evidencing benign reverse recovery behavior, unlocking several high-efficiency low-voltage applications of the S4T topology.
    URI
    http://hdl.handle.net/1853/64169
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Related items

    Showing items related by title, author, creator and subject.

    • Systems And Methods For A Spdt Switch Or Spmt Switch With Transformer 

      Lee, Dong Ho; Ahn, Minsik; An, Kyu Hwan; Woo, Wangmyong; Lee, Chang-ho; Laskar, Joy (10/25/2011)
      A SPDT or SPMT switch may include a transformer having a primary winding and a secondary winding, where a first end of the secondary winding is connected to a single pole port, where a first end of the primary winding is ...
    • Systems, Methods And Apparatuses For High Power Complementary Metal Oxide Semiconductor (CMOS) Antenna Switches Using Body Switching And External Component In Multi-stacking Structure 

      Ahn, Minsik; Lee, Chang-Ho; Chang, Jaejoon; Woo, Wangmyong; Kim, Haksun; Laskar, Joy (6/15/2010)
      Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SPDT switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz, 1.9 GHz and 2.1 ...
    • Systems, Methods, And Apparatuses For Complementary Metal Oxide Semiconductor (cmos) Antenna Switches Using Body Switching In Multistacking Structure 

      Ahn, Minsik; Lee, Chang-ho; Cho, Changhyuk; Chang, Jaejoon; Woo, Wangmyong; Kim, Haksun; Laskar, Joy (2/15/2011)
      Embodiments of the invention may provide for a CMOS antenna switch, which may be referred to as a CMOS SP4T switch. The CMOS antenna switch may operate at a plurality of frequencies, perhaps around 900 MHz and 1.9 GHz ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology