• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Application of Response Surface Methodology to the Design of Tipjet Driven Stopped Rotor/Wing Concepts

    Thumbnail
    View/Open
    AIAA-95-3965.pdf (150.8Kb)
    Date
    1995-09
    Author
    Tai, Jimmy C. M.
    Mavris, Dimitri N.
    Schrage, Daniel P.
    Metadata
    Show full item record
    Abstract
    The possibility of a new aircraft that is capable of solving the increasing demand of inter-city transportation has attracted the attention of the aerospace industry for quite some time. Under the High Speed Rotorcraft Concept (HSRC) program, both NASA and the U.S. helicopter industry have studied a series of candidate rotorcraft configurations capable of cruising at high speeds and capable of taking off and landing vertically at vertiports located at downtown. Among these candidates, the stopped rotor/wing configuration has been the least studied due to lack of appropriate analytical tools to assist in its design and due to a general lack of understanding of the physics behind this unconventional concept. Even though the HSRC program has since been canceled, Georgia Tech's Aerospace Systems Design Laboratory (ASDL) recognized the need for a design methodology capable of handling the synthesis and sizing of such vehicles and has continued its pursuit. Therefore, such a computer simulation code has been developed to size reaction driven stopped rotor/wing vehicles which may or may not enable Circulation Control. The difficulty in sizing such a concept is primarily due to the unique coupling of rotor and engine which need to be sized concurrently since they are directly linked to each other and cannot be studied in isolation. This coupling, in fact, is not seen in any other concept. The methodology and computer simulation tool presented in this paper show how this coupling is accomplished. Furthermore, the results from this rotor/engine coupling are presented in the form of Response Surface Equations that is derived through the application of Response Surface Methodology. These RSE's also provide the designer with a unique ability to predict what the response will be, based on the settings of the design variables that he/she chooses. The robustness advantages of using these RSE's are also presented in the vehicle sizing portion of the overall design methodology for the stopped rotor/wing configurations.
    URI
    http://hdl.handle.net/1853/6417
    Collections
    • Aerospace Systems Design Laboratory Publications [314]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology