• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thin-Film AlN-on-Silicon Resonant Gyroscopes: Design, Fabrication, and Eigenmode Operation

    Thumbnail
    View/Open
    HODJAT-SHAMAMI-DISSERTATION-2020.pdf (4.032Mb)
    Date
    2020-12-06
    Author
    Hodjat-Shamami, Mojtaba
    Metadata
    Show full item record
    Abstract
    Resonant MEMS gyroscopes have been rapidly adopted in various consumer, industrial, and automotive applications thanks to the significant improvements in their performance over the past decade. The current efforts in enhancing the performance of high-precision resonant gyroscopes are mainly focused on two seemingly contradictory metrics, larger bandwidth and lower noise level, to push the technology towards navigation applications. The key enabling factor for the realization of low-noise high-bandwidth resonant gyroscopes is the utilization of a strong electromechanical transducer at high frequencies. Thin-film piezoelectric-on-silicon technology provides a very efficient transduction mechanism suitable for implementation of bulk-mode resonant gyroscopes without the need for submicron capacitive gaps or large DC polarization voltages. More importantly, in-air operation of piezoelectric devices at moderate Q values allows for the cointegration of mode-matched gyroscopes and accelerometers on a common substrate for inertial measurement units. This work presents the design, fabrication, characterization, and method of mode matching of piezoelectric-on-silicon resonant gyroscopes. The degenerate in-plane flexural vibration mode shapes of the resonating structure are demonstrated to have a strong gyroscopic coupling as well as a large piezoelectric transduction coefficient. Eigenmode operation of resonant gyroscopes is introduced as the modal alignment technique for the piezoelectric devices independently of the transduction mechanism. Controlled displacement feedback is also employed as the frequency matching technique to accomplish complete mode matching of the piezoelectric gyroscopes.
    URI
    http://hdl.handle.net/1853/64212
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology