• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of Machine Learning to Create a Database of Wires for Helicopter Wire Strike Prevention

    Thumbnail
    View/Open
    scitech_harris2021wirestrike.pdf (8.539Mb)
    Date
    2021-01-04
    Author
    Harris, Caleb M.
    Achour, Gabriel
    Payan, Alexia P.
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    Rotorcraft collisions with wires and power lines have been a major cause of accidents over the past decades. They are rather difficult to predict and often result in fatalities. For this reason, there is a push to provide pilots with additional information regarding wires in the surrounding environment of the helicopter. However, the precise locations of power lines and other aerial wires are not available in any centralized database. This work proposes the development of a wire database in two phases. First, power line structures are detected from aerial imagery using deep learning techniques. Second, the complete power grid network is predicted using a centralized many-to-many graph search. The two-step framework produces an approximate medium-voltage grid stored as a set of connected line segments in GPS coordinates. Experiments are conducted in Washington D.C. using openly available datasets. Results show that utility pole locations can be predicted from satellite imagery using deep learning methods and a full grid network can be generated to a level of detail depending on computational power and available data for inference in the graph search. Even with limited computational resources and a noisy dataset, over a a fourth of the grid network is directly predicted within a range of seven meters, and the majority of the network is visually inferred from nearby detections. Moving forward, the goal is to apply the proposed framework to larger regions of the U.S., with rural and urban environments, to map all wires and cables that are a threat to rotorcraft safety.
    URI
    http://hdl.handle.net/1853/64233
    Collections
    • Aerospace Systems Design Laboratory Publications [308]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology