• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Off-Nominal Performance and Reliability of a Distributed Electric Propulsion Aircraft during Early Design

    Thumbnail
    View/Open
    Bendarkar_Scitech2021_X57_Reliability - ResearchGate.pdf (1.065Mb)
    Date
    2021-01-04
    Author
    Bendarkar, Mayank V.
    Sarojini, Darshan
    Harrison, Evan D.
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    General Aviation (GA) is likely to be at the forefront of a paradigm change in aviation, where the introduction of novel concepts such as Urban Air Mobility (UAM), architectures like e-VTOL, and technologies like Distributed Electric Propulsion (DEP) are expected to make aircraft more efficient and reduce their environmental footprint. However, these architectures carry with them an uncertainty related to the off-nominal operational risk they pose. The limitations and off-nominal operational considerations generally postulated during traditional safety analysis may not be complete or correct for new technologies. While a lot of the literature surveyed focuses on improving traditional methods of safety analysis, it still does not completely address the limitations caused due to insufficient knowledge and experience with transformative technologies. The research objective of the present work is to integrate the Bayesian safety assessment framework developed previously by the authors with conceptual and 6-DoF performance models for DEP aircraft to evaluate off-nominal performance and reliability using information that is typically available in conceptual or preliminary design phases. A case study on the electric power architecture of the the NASA Maxwell X-57 Mod. IV is provided. A maximum potential flight path angle metric, as well as trimmability considerations using a 6-DoF model constructed using available literature help determine hazard severity of power degradation scenarios. Bayesian failure rate posteriors are constructed for the different components in the traction power system, which are used in a Bayesian decision framework. The results indicate that while most of the components in the traction power architecture of the X-57 Mod. IV are compliant with failure rate requirements generated, the batteries, cruise motors, and cruise motor-inverters do not meet those requirements.
    URI
    http://hdl.handle.net/1853/64235
    Collections
    • Aerospace Systems Design Laboratory Publications [307]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology