• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Interdisciplinary Research Centers (IRCs)
    • Machine Learning (ML@GT)
    • Machine Learning@Georgia Tech Seminars
    • View Item
    •   SMARTech Home
    • Georgia Tech Interdisciplinary Research Centers (IRCs)
    • Machine Learning (ML@GT)
    • Machine Learning@Georgia Tech Seminars
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning Tree Models in Noise: Exact Asymptotics and Robust Algorithms

    Thumbnail
    View/Open
    tan.mp4 (216.3Mb)
    tan_videostream.html (1.323Kb)
    transcript.txt (44.82Kb)
    thumbnail.jpg (66.20Kb)
    Date
    2021-02-10
    Author
    Tan, Vincent Y. F.
    Metadata
    Show full item record
    Abstract
    We consider the classical problem of learning tree-structured graphical models but with the twist that the observations are corrupted in independent noise. For the case in which the noise is identically distributed, we derive the exact asymptotics via the use of probabilistic tools from the theory of strong large deviations. Our results strictly improve those of Bresler and Karzand (2020) and Nikolakakis et al. (2019) and demonstrate keen agreement with experimental results for sample sizes as small as that in the hundreds. When the noise is non-identically distributed, Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a "partial" tree structure; that is, one that belongs to the equivalence class containing the true tree. We propose Symmetrized Geometric Averaging (SGA), a statistically robust algorithm for partial tree recovery. We provide error exponent analyses and extensive numerical results on a variety of trees to show that the sample complexity of SGA is significantly better than the algorithm of Katiyar et al. (2020). SGA can be readily extended to Gaussian models and is shown via numerical experiments to be similarly superior.
    URI
    http://hdl.handle.net/1853/64282
    Collections
    • Machine Learning@Georgia Tech Seminars [52]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology