• Login
    View Item 
    •   SMARTech Home
    • Undergraduate Research Opportunities Program (UROP)
    • Undergraduate Research Option Theses
    • View Item
    •   SMARTech Home
    • Undergraduate Research Opportunities Program (UROP)
    • Undergraduate Research Option Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating Sim-to-Real Transfer and Multi-Agent Learning in Assistive Gym

    Thumbnail
    View/Open
    SCHAFFER-UNDERGRADUATERESEARCHOPTIONTHESIS-2020.pdf (647.3Kb)
    Date
    2020-12
    Author
    Schaffer, Holden C.
    Metadata
    Show full item record
    Abstract
    As the world's population grows older on average and the number of available caregivers decreases, assistive robotics pose an opportunity for older adults or people with disabilities to continue receiving the care that they need. Recent work has shown tremendous progress in using deep reinforcement learning to teach robotic caregivers how to properly assist people in simulation, where robots can learn how to interact with humans in a safe, controlled manner. However, transferring what the robot has learned from simulation to reality continues to pose a challenge for assistive robotics, and a gap in the literature exists in finding techniques to overcome this challenge for this particular domain. The first part of this research uses an assistive simulation framework known as Assistive Gym and its simulated drinking environment to test various approaches to sim-to-real transfer for assistive robotics. The end result of this portion of the research is the identification of a series of baseline steps that are necessary to transfer the Drinking task in Assistive Gym to a physical PR2. Next, the avenues for future works are addressed by investigating a few potential modifications to the drinking task which could be implemented for a more successful transfer of policies. The second part of the research investigates how multi-agent learning could be implemented in Assistive Gym. This section implements multi-agent assistance for the bed-bathing environment, then tests the effectiveness of three different algorithms in order to gauge their effectiveness for solving this new multi-agent task. These algorithms include two variations of single-agent Proximal Policy Optimization modified for multi-agent use as well as Multi-Agent Deep Deterministic Policy Gradient. Finally, future works related to multi-agent assistance are discussed, namely choosing alternate implementations of MADDPG and investigating the dressing environment for its greater potential for cooperation between robots.
    URI
    http://hdl.handle.net/1853/64369
    Collections
    • School of Computer Science Undergraduate Research Option Theses [205]
    • Undergraduate Research Option Theses [862]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology