• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robot Learning from Heterogeneous Demonstration

    Thumbnail
    View/Open
    CHEN-THESIS-2020.pdf (4.208Mb)
    Date
    2020-04-28
    Author
    Chen, Letian Zac
    Metadata
    Show full item record
    Abstract
    Learning from Demonstration (LfD) has become a ubiquitous and user-friendly technique to teach a robot how to perform a task (e.g., playing Ping Pong) without the need to use a traditional programming language (e.g., C++). As these systems are increasingly being placed in the hands of everyday users, researchers are faced with the reality that end-users are a heterogeneous population with varying levels of skills and experiences. This heterogeneity violates almost universal assumptions in LfD algorithms that demonstrations given by users are near-optimal and uniform in how the task is accomplished. In this thesis, I present algorithms to tackle two specific types of heterogeneity: heterogeneous strategy and heterogeneous performance. First, I present Multi-Strategy Reward Distillation (MSRD), which tackles the problem of learning from users who have adopted heterogeneous strategies. MSRD extracts separate task reward and strategy reward, which represents task specification and demonstrator's strategic preference, respectively. We are able to extract the task reward that has 0.998 and 0.943 correlation with ground-truth reward on two simulated robotic tasks and successfully deploy it on a real-robot table-tennis task. Second, I develop two algorithms to address the problem of learning from suboptimal demonstration: SSRR and OP-AIRL. SSRR is a novel mechanism to regress over noisy demonstrations to infer an idealized reward function. OP-AIRL is a mechanism to learn a policy that more effectively teases out ambiguity from sub-optimal demonstrations. By combining SSRR with OP-AIRL, we are able to achieve a 688% and a 254% improvement over state-of-the-art on two simulated robot tasks.
    URI
    http://hdl.handle.net/1853/64653
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23878]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology