• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Of Priors and Particles: Structured and Distributed Approaches to Robot Perception and Control

    Thumbnail
    View/Open
    LAMBERT-DISSERTATION-2021.pdf (18.26Mb)
    Date
    2021-08-04
    Author
    Lambert, Alexander
    Metadata
    Show full item record
    Abstract
    Applications of robotic systems have expanded significantly in their scope, moving beyond the caged predictability of industrial automation and towards more open, unstructured environments. These agents must learn to reliably perceive their surroundings, efficiently integrate new information and quickly adapt to dynamic perturbations. To accomplish this, we require solutions which can effectively incorporate prior knowledge while maintaining the generality of learned representations. These systems must also contend with uncertainty in both their perception of the world and in predicting possible future outcomes. Efficient methods for probabilistic inference are then key to realizing robust, adaptive behavior. This thesis will first examine data-driven approaches for learning and combining perceptual models for both visual and tactile sensor modalities, common in robotics. Modern variational inference methods will then be examined in the context of online optimization and stochastic optimal control. Specifically, this thesis will contribute (1) data-driven visual and tactile perceptual models leveraging kinematic and dynamic priors, (2) a framework for joint inference with visuo-tactile sensing, (3) a family of particle-based, variational model predictive control and planning algorithms, and (4) a distributed inference scheme for online model adaptation.
    URI
    http://hdl.handle.net/1853/65082
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology