• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adding Machine Intelligence to Hybrid Memory Management

    Thumbnail
    View/Open
    DOUDALI-DISSERTATION-2021.pdf (6.304Mb)
    Date
    2021-07-30
    Author
    Doudali, Thaleia-Dimitra
    Metadata
    Show full item record
    Abstract
    Computing platforms increasingly incorporate heterogeneous memory hardware technologies, as a way to scale application performance, memory capacities and achieve cost effectiveness. However, this heterogeneity, along with the greater irregularity in the behavior of emerging workloads, render existing hybrid memory management approaches ineffective, calling for more intelligent methods. To this end, this thesis reveals new insights, develops novel methods and contributes system-level mechanisms towards the practical integration of machine learning to hybrid memory management, boosting application performance and system resource efficiency. First, this thesis builds Kleio; a hybrid memory page scheduler with machine intelligence. Kleio deploys Recurrent Neural Networks to learn memory access patterns at a page granularity and to improve upon the selection of dynamic page migrations across the memory hardware components. Kleio cleverly focuses the machine learning on the page subset whose timely movement will reveal most application performance improvement, while preserving history-based lightweight management for the rest of the pages. In this way, Kleio bridges on average 80% of the relative existing performance gap, while laying the grounds for practical machine intelligent data management with manageable learning overheads. In addition, this thesis contributes three system-level mechanisms to further boost application performance and reduce the operational and learning overheads of machine learning-based hybrid memory management. First, this thesis builds Cori; a system-level solution for tuning the operational frequency of periodic page schedulers for hybrid memories. Cori leverages insights on data reuse times to fine tune the page migration frequency in a lightweight manner. Second, this thesis contributes Coeus; a page grouping mechanism for page schedulers like Kleio. Coeus leverages Cori’s data reuse insights to tune the granularity at which patterns are interpreted by the page scheduler and enable the training of a single Recurrent Neural Network per page cluster, reducing by 3x the model training times. The combined effects of Cori and Coeus provide 3x additional performance improvements to Kleio. Finally, this thesis proposes Cronus; an image-based page selector for page schedulers like Kleio. Cronus uses visualization to accelerate the process of selecting which page patterns should be managed with machine learning, reducing by 75x the operational overheads of Kleio. Cronus lays the foundations for future use of visualization and computer vision methods in memory management, such as image-based memory access pattern classification, recognition and prediction.
    URI
    http://hdl.handle.net/1853/65103
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]

    Related items

    Showing items related by title, author, creator and subject.

    • The common elements of working memory capacity and fluid intelligence: primary memory, secondary memory and executive attention 

      Shipstead, Zachary M. (Georgia Institute of Technology, 2012-08-16)
      Working memory is a mental system that is related to cognitive control and higher cognition. Although the topic of working memory is well researched, there is a great deal of debate about the mechanisms that drive individual ...
    • Timescape and Memory: Visualizing Big Data at the 9/11 Memorial Museum 

      Klein, Lauren F. (Taylor and Francis, 2018)
    • Running memory/working memory: span tasks and their prediction of higher-order cognition 

      Broadway, James M., Jr. (Georgia Institute of Technology, 2008-03-31)
      Different versions of complex, simple, and running tests of immediate memory span were compared in their ability to predict fluid intelligence (gF). Conditions across memory tasks differed in terms of whether or not a ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology