• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ROS based Teleoperation and Docking of a Low Speed Urban Vehicle

    Thumbnail
    View/Open
    ZAIDI-THESIS-2020.pdf (4.889Mb)
    Date
    2020-08-27
    Author
    Zaidi, Zulfiqar Haider
    Metadata
    Show full item record
    Abstract
    In recent years, 4G LTE technology has provided us with higher than ever transfer speeds over the cellular networks, permitting streaming of video and other high bandwidth services. On the other hand, there has been a rapid development and an explosion of interest in frameworks for robot software development, particularly ROS. Though there have been many studies which have leveraged 4G LTE network as the mode of communication when studying teleoperations, a very few studies have used 4G LTE network with ROS framework for building teleoperated systems. Therefore, this study seeks to build a teleoperated system using the ROS framework which employs the 4G LTE network for communication. For this purpose, a prototype system is built using a remote-controlled low speed urban vehicle that hosts a multimedia link between the vehicle and the control station. The operator drives the vehicle remotely primarily based on processed video feed and LIDAR data. The vehicle is also equipped with safety systems to avoid collisions. The teleoperated system built is tested by asking an experienced driver to complete certain tasks while driving the vehicle remotely. Moreover, this study also intends to build an autonomous docking procedure for the vehicle. A docking procedure based on differential GPS and video feedback is built that allows the vehicle to autonomously dock itself into a charging station. The procedure provides a proof of concept solution for the autonomous charging/fueling of self-driving cars.  
    URI
    http://hdl.handle.net/1853/65974
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology