• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    BIOPRINTED CARDIAC PATCH COMPOSED OF CARDIAC PROGENITOR CELLS AND EXTRACELLULAR MATRIX FOR HEART REPAIR AND REGENERATION

    Thumbnail
    View/Open
    BEJLERI-DISSERTATION-2020.pdf (4.874Mb)
    Date
    2020-08-24
    Author
    Bejleri, Donald
    Metadata
    Show full item record
    Abstract
    Congenital heart defects are present in 8 of 1000 newborns, and palliative surgical therapy has increased survival rates. Despite improved outcomes, many children develop reduced cardiac function and go on to heart failure and transplantation. Human cardiac progenitor cell (hCPC) therapy has the potential to repair the pediatric myocardium through reparative factor release but suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) has improved heart function in adults while also improving CPC functionality in 2D and 3D culture. This work focuses on developing a bioprinted cardiac patch composed of native cECM and pediatric hCPCs, for use as an epicardial device in repairing the damaged myocardium. First, a method to print patches with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA) is developed. Patch assessments include bioink printability, cellular functionality, and mechanical properties in vitro. To further tailor the reparative potential of cardiac patches, modifying patch components, particularly cell age, matrix composition, and oxygen growth conditions are evaluated. Finally, the implantation of patches in vivo towards improvements to cardiac function in a rat model of right ventricular heart failure, compared to sham controls and cell-free patches, is evaluated. Assessments include hCPC retention, right ventricle function, and tissue level parameters (vessel density, cardiomyocyte hypertrophy, and fibrosis) across all treatments. The animal model evaluation shows that cell-free and neonatal hCPC-laden cECM-GelMA patches improve right ventricle function and tissue level parameters compared to other patch groups and surgical controls. cECM inclusion into patches may be the most influential parameter driving therapeutic improvements. Additionally, child hCPC patches require cECM incorporation to improve right ventricle function, compared to cECM-free child hCPC patches. Altogether, this study paves the way for clinical trials in treating pediatric heart failure using the bioprinted hCPC-GelMA-cECM patches.
    URI
    http://hdl.handle.net/1853/65978
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23877]

    Related items

    Showing items related by title, author, creator and subject.

    • Design of a cardiac fitness and lifestyle management tool for phase III cardiac rehabilitation patients 

      Berryman, Barbara Michelle Swindell (Georgia Institute of Technology, 2002-05)
    • Uniting Robots and Ultrasound for Cardiac Repair 

      Howe, Robert (Georgia Institute of Technology, 2019-10-09)
      Minimally invasive techniques have revolutionized many areas of surgery, but heart surgery has seen limited progress. We are working to combine ultrasound imaging and robotic manipulation to enable cardiac procedures that ...
    • Novel Strategies for Treating Cardiac Dysfunction 

      Davis, Michael (Georgia Institute of Technology, 2010-10-12)

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology