Show simple item record

dc.contributor.authorJagannatha, Bindu B.
dc.contributor.authorHo, Koki
dc.date.accessioned2022-06-16T13:48:30Z
dc.date.available2022-06-16T13:48:30Z
dc.date.issued2020-03
dc.identifier.citationB. Jagannatha and K. Ho, “Event-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraft,” Journal of Spacecraft and Rockets, Vol. 57, No. 3, pp. 446-463, 2020. DOI: 10.2514/1.A34628en_US
dc.identifier.urihttp://hdl.handle.net/1853/66792
dc.description© AIAAen_US
dc.description.abstractNumerous high-thrust and low-thrust space propulsion technologies have been developed in the recent years with the goal of expanding space exploration capabilities; however, designing and optimizing a multi-mission campaign with both high-thrust and low-thrust propulsion options are challenging due to the coupling between logistics mission design and trajectory evaluation. Specifically, this computational burden arises because the deliverable mass fraction (i.e., final-to-initial mass ratio) and time of flight for low-thrust trajectories can can vary with the payload mass; thus, these trajectory metrics cannot be evaluated separately from the campaign-level mission design. To tackle this challenge, this paper develops a novel event-driven space logistics network optimization approach using mixed-integer linear programming for space campaign design. An example case of optimally designing a cislunar propellant supply chain to support multiple lunar surface access missions is used to demonstrate this new space logistics framework. The results are compared with an existing stochastic combinatorial formulation developed for incorporating low-thrust propulsion into space logistics design; our new approach provides superior results in terms of cost as well as utilization of the vehicle fleet. The event-driven space logistics network optimization method developed in this paper can trade off cost, time, and technology in an automated manner to optimally design space mission campaigns.en_US
dc.titleEvent-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraften_US
dc.typePost-printen_US
dc.contributor.corporatenameUniversity of Illinois, Urbana-Champaign. Department of Aerospace Engineeringen_US
dc.contributor.corporatenameGeorgia Institute of Technology. School of Aerospace Engineeringen_US
dc.identifier.doihttps://doi.org/10.2514/1.A34628en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record