• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coordinating Team Tactics for Swarm-vs.-Swarm Adversarial Games

    Thumbnail
    View/Open
    STRICKLAND-DISSERTATION-2022.pdf (3.864Mb)
    Date
    2022-07-12
    Author
    Strickland, Laura Gail
    Metadata
    Show full item record
    Abstract
    While swarms of UAVs have received much attention in the last few years, adversarial swarms (i.e., competitive, swarm-vs.-swarm games) have been less well studied. In this dissertation, I investigate the factors influential in team-vs.-team UAV aerial combat scenarios, elucidating the impacts of force concentration and opponent spread in the engagement space. Specifically, this dissertation makes the following contributions: (1) Tactical Analysis: Identifies conditions under which either explicitly-coordinating tactics or decentralized, greedy tactics are superior in engagements as small as 2-vs.-2 and as large as 10-vs.-10, and examines how these patterns change with the quality of the teams' weapons; (2) Coordinating Tactics: Introduces and demonstrates a deep-reinforcement-learning framework that equips agents to learn to use their own and their teammates' situational context to decide which pre-scripted tactics to employ in what situations, and which teammates, if any, to coordinate with throughout the engagement; the efficacy of agents using the neural network trained within this framework outperform baseline tactics in engagements against teams of agents employing baseline tactics in N-vs.-N engagements for N as small as two and as large as 64; and (3) Bio-Inspired Coordination: Discovers through Monte-Carlo agent-based simulations the importance of prioritizing the team's force concentration against the most threatening opponent agents, but also of preserving some resources by deploying a smaller defense force and defending against lower-penalty threats in addition to high-priority threats to maximize the remaining fuel within the defending team's fuel reservoir.
    URI
    http://hdl.handle.net/1853/67090
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Interactive Computing Theses and Dissertations [144]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology