• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Simulation Environment to Track Key Metrics to Support Trajectory Energy Management of Electric Aircraft

    Thumbnail
    View/Open
    (2022 AIAA Aviation) Development of a Simulation Environment to Track Key Metrics to Support Trajectory Energy Management of Electric Aircraft.pdf (36.46Mb)
    Date
    2022-07
    Author
    Verberne, Johannes
    Beedie, Seumas M.
    Harris, Caleb
    Justin, Cedric Y.
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    Growing concerns worldwide about anthropogenic climate change are leading to significant research in ways to reduce greenhouse gas emissions. Technologies are investigated to improve the overall energy efficiency of flying vehicles, and among these, new powertrain technologies less reliant on fossil fuels are especially promising. Concurrently, the expected growth of new market segments, such as urban air mobility and regional air mobility where vehicles are envisioned to operate over densely populated areas, will lead to increased scrutiny regarding the vehicle emissions and the vehicle safety. In this context, significant research has been carried out in the field of electric and hybrid-electric aircraft propulsion. Driven by significant strides made by the automotive industry regarding electric battery technology, the aspirational goal of useful electric flight is now within reach. Significant challenges nonetheless remain regarding the certification of these new vehicles to ensure an equivalent level of safety. Indeed, the behavior of electric powertrains is more complex than that of traditional powertrains and features additional thermal and ageing constraints that need to be contended with. Moreover, the ability of many of these vehicles to fly both on their wing or on their rotors brings another level of sophistication that will increase the workload of flight crews. Combined, these might adversely impact the safety of flight. This research aims to elucidate some of these challenges by providing insights into the behavior and idiosyncracies of new electrified vehicles and by identifying visual cues that should be provided to flight crews to support safe decisionmaking in the cockpit. Besides these visual cues, we explore functionalities that a Trajectory Energy Management system could feature to improve flight safety by providing insights into the management of stored usable energy and by monitoring critical parameters of electrified powertrains. This paper includes two use-cases in which the functionality of the Trajectory Energy Management system is explored for pre-flight planning and in-flight diversion decisionmaking applications.
    URI
    http://hdl.handle.net/1853/67375
    Collections
    • Aerospace Systems Design Laboratory Publications [307]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology