• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-Dimensional Characterization of Topographies of Geomaterial Particles and Surfaces

    Thumbnail
    View/Open
    sozer_zeynep_b_200505_phd.pdf (12.10Mb)
    Date
    2005-04-15
    Author
    Sozer, Zeynep Bade
    Metadata
    Show full item record
    Abstract
    The soil-structure interface is fundamental to the performance of many geotechnical engineering systems; including penetration test devices, deep foundations, and retaining structures. In geotechnical engineering structures, the counterface may range from a polymer in the case of a geosynthetically reinforced earth retaining structure to steel for cone penetration testing or pile foundations. Interface strength is affected by many factors, among which surface roughness is the most dominant. To date common practice has been to characterize counterface surface roughness by a roughness parameter based on only its spatial properties and soil roughness separately by various incompatible means resulting in two roughness values unrelated to each other. The vast number of analyzing methods and developed parameters reveal the general confusion regarding this concept. Rather than analyzing the particulate and continuum media separately, it is compulsory to coalesce the analysis and quantify the relative nature of interface behavior. This can be accomplished by examining the particulate and continuum media through the same powerful tools. The motive of this study is to develop a unified approach to determining the index properties of particles and surfaces in a particle-surface interface. This is accomplished by examining several particle shape and surface roughness parameters in terms of their ability to uniquely describe and distinguish particulate medium and continuum roughness, respectively. In this study, surfaces are analyzed as derived particles by wrapping surface profiles and particles are evaluated as derived surfaces via unrolling particle outlines. In addition, particle shape parameters are modified to allow surface roughness analysis and surface roughness parameters are modified to characterize particle shape. A unified approach for particulate shape and continuum roughness would ultimately lead to a better understanding of micro-scale interaction mechanism and better quantification of macro-scale mobilized resistance for soil and engineering surface interaction.
    URI
    http://hdl.handle.net/1853/6866
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology