• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Migration of Dredged Material Mounds: Predictions Based on Field Measurements of Waves, Currents, and Suspended Sediments, Brunswick, GA

    Thumbnail
    View/Open
    johnson_charley_r_200505_mast.pdf (1.370Mb)
    Date
    2005-04-20
    Author
    Johnson, Charley R.
    Metadata
    Show full item record
    Abstract
    The state of Georgia has two large ports that are accessed by way of navigable entrance channels. One of these ports is located in Brunswick, Georgia, and is maintained by the United States Army Corps of Engineers via periodic dredging. Sediments removed from the channel are typically pumped several miles offshore of Brunswick and placed in dredged material mounds, thus removing the sediment from the littoral cycle. This offshore placement, while being the most economically viable method, often negatively impacts the sediment budget of the coastal region and causes erosion downdrift of the channel, specifically along Jekyll Island. Onshore placement of the dredged material is not feasible due to increased associated costs and the high fraction of fines present in the material; thus, nearshore placement is a potentially viable alternative. Nearshore placement could possibly reduce erosion rates and provide protection to property from waves and storms. The USACE initiated a thorough field data collection campaign in 2002 to study the possibility of beneficial placement of dredged material. The author analyzed the existing data to predict the rate and direction of sediment movement away from an existing dredge mound. These predictions are then compared to bathymetric survey data in an effort to validate the results and methodologies used for sediment transport predictions. The ultimate goal is to use the results of this study along with numerical models currently being developed by the Corps to assess the possibility of sediments being transported toward the shore thus re-entering the littoral cycle and providing a benefit to the coast of Georgia.
    URI
    http://hdl.handle.net/1853/6897
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Civil and Environmental Engineering Theses and Dissertations [1723]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology