• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanical optimization of vascular bypass grafts

    Thumbnail
    View/Open
    felden_luc_200505_mast.pdf (1.797Mb)
    Date
    2005-04-14
    Author
    Felden, Luc
    Metadata
    Show full item record
    Abstract
    Synthetic vascular grafts are useful to bypass diseased arteries. The long-term failure of synthetic grafts is primarily due to intimal hyperplasia at the anastomotic sites. The accelerated intimal hyperplasia may stem from a compliance mismatch between the host artery and the graft since commercially available synthetic conduits are much stiffer than an artery. The objective of this thesis is to design a method for fabricating a vascular graft that mechanically matches the patients native artery over the expected physiologic range of pressures. The creation of an optimized mechanical graft will hopefully lead to an improvement in patency rates. The mechanical equivalency between the graft and the host artery is defined locally by several criteria including the diameter upon inflation, the elasticity at mean pressure, and axial force. A single parameter mathematical for a thin-walled tube is used to describe of the final mechanical behavior of a synthetic graft. For the general problem, the objective would be to fabricate a mechanics-matching vascular graft for each host artery. Typically, fabrication parameters are set initially and the properties of the fabricated graft are measured. However, by modeling the entire fabrication process and final mechanical properties, it is possible to invert the situation and let the typical output mechanical values be used to define the fabrication parameters. The resultant fabricated graft will then be mechanically matching. As a proof-of-concept, several prototype synthetic grafts were manufactured and characterized by a single Invariant to match a canine artery. The resultant graft equaled the diameter upon inflation, the elasticity at mean pressure, and axial force of the native canine artery within 6%. An alternative to making an individual graft for each artery is also presented. A surgeon may choose the best graft from a set of pre-manufactured grafts, using a computer program algorithm for best fit using two parameters in a neighborhood. The design optimization problem was solved for both canine carotid and human coronary arteries. In conclusion, the overall process of design, fabrication and selection of a mechanics matching synthetic vascular graft is shown to be reliable and robust.
    URI
    http://hdl.handle.net/1853/6903
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Related items

    Showing items related by title, author, creator and subject.

    • The role of wall shear stress in the development of neointima and pseudointima in PTFE grafts 

      Ku, David N. (Georgia Institute of Technology, 1990-07)
    • Rowing? Grafting? Catalan architecture at the Venice Biennales 

      Perich Capdeferro, Ariadna (Georgia Institute of Technology, 2015-01-28)
      What do we talk about when we talk about Catalan architecture? The lecture approaches this question through a critical look at how Catalan architecture has been framed and presented at the 2012 and 2014 Venice Biennales.
    • Devices For Creating Vascular Grafts By Vessel Distension Using Rotatable Elements 

      Vito, Raymond P.; Griffis III, Jack C. (11/4/2003)
      Devices and methods are provided for forming a vascular graft by axially distending a blood vessel to induce growth. The device preferably comprises a stretching mechanism which includes (i) a stabilization rod, (ii) a ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology