• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laboratory Measurements of the Millimeter Wavelength Opacity of Phosphine (PH3) and Ammonia (NH3) Under Simulated Conditions for the Cassini-Saturn Encounter

    Thumbnail
    View/Open
    mohammed_priscilla_n_200505_phd.pdf (1.291Mb)
    Date
    2005-04-18
    Author
    Mohammed, Priscilla Naseem
    Metadata
    Show full item record
    Abstract
    The molecular compositions of the atmospheres of the giant planets (Jupiter, Saturn, Uranus and Neptune) are fundamental to understanding the processes which formed these planets and the solar system as a whole. Microwave observations of these planets probe regions in their atmospheres from approximately 0.1 to several bars, a process otherwise unachievable by visible and infrared means. Many gases and various cloud layers influence the millimeter wave spectra of the outer planets; however phosphine and ammonia are the main microwave absorbers at Saturn at pressures less than two bars. Understanding the pressure induced absorption of both constituents at observational frequencies is therefore vital to the analysis of any observational data. Laboratory measurements have been conducted to measure the microwave absorptivity and refractivity of phosphine and ammonia at Ka-band (32-40 GHz) and W-band (94 GHz), under conditions characteristic of the atmosphere of Saturn. The results were used to verify the accuracy of the phosphine formalism created by Hoffman et. al (2001) for use at millimeter wavelengths. Based on the laboratory measurements conducted, new formalisms were also created to express the opacity of ammonia at the measured frequencies. An important method for the study of planetary atmospheres is the radio occultation experiment ??method that uses radio links between Earth, and the spacecraft which passes behind the planet. The Cassini mission to Saturn, which will be conducting such experiments at Ka-band as well as S (2.3 GHz) and X (8.4 GHz) bands, has prompted the development of a radio occultation simulator used to calculate excess Doppler shifts and attenuation profiles for Saturn, utilizing the newest formalisms for phosphine and ammonia. The results indicate that there will be unambiguous detection and profiling of phosphine and ammonia, and predictions are made for the pressures at which loss of signal is anticipated.
    URI
    http://hdl.handle.net/1853/6927
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology