• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Circuit Level Techniques for Power and Reliability Optimization of CMOS Logic

    Thumbnail
    View/Open
    diril_abdulkadir_u_200505_phd.pdf (1.690Mb)
    Date
    2005-04-21
    Author
    Diril, Abdulkadir Utku
    Metadata
    Show full item record
    Abstract
    Technology scaling trends lead to shrinking of the individual elements like transistors and wires in digital systems. The main driving force behind this is cutting the cost of the systems while the systems are filled with extra functionalities. This is the reason why a 3 GHz Intel processor now is priced less than what a 50MHz processor was priced 10 years ago. As in most cases, this comes with a price. This price is the complex design process and problems that stem from the reduction in physical dimensions. As the transistors became smaller in size and the systems became faster, issues like power consumption, signal integrity, soft error tolerance, and testing became serious challenges. There is an increasing demand to put CAD tools in the design flow to address these issues at every step of the design process. First part of this research investigates circuit level techniques to reduce power consumption in digital systems. In second part, improving soft error tolerance of digital systems is considered as a trade off problem between power and reliability and a power aware dynamic soft error tolerance control strategy is developed. The objective of this research is to provide CAD tools and circuit design techniques to optimize power consumption and to increase soft error tolerance of digital circuits. Multiple supply and threshold voltages are used to reduce power consumption. Variable supply and threshold voltages are used together with variable capacitances to develop a dynamic soft error tolerance control scheme.
    URI
    http://hdl.handle.net/1853/6929
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology