• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of Copper Foam Coldplates as a High Heat Flux Electronics Cooling Solution

    Thumbnail
    View/Open
    wilson_scott_e_200505_mast.pdf (3.128Mb)
    Date
    2005-04-28
    Author
    Wilson, Scott E.
    Metadata
    Show full item record
    Abstract
    Compact heat exchangers such as porous foam coldplates have great potential as a high heat flux cooling solution for electronics due to their large surface area to volume ratio and tortuous coolant path. The focus of this work was the development of unit cell modeling techniques for predicting the performance of coldplates with porous foam in the coolant path. Multiple computational fluid dynamics (CFD) models which predict porous foam coldplate pressure drop and heat transfer performance were constructed and compared to gain insight into how to best translate the foam microstructure into unit cell model geometry. Unit cell modeling in this study was realized by applying periodic boundary conditions to the coolant entrance and exit faces of a representative unit cell. A parametric study was also undertaken which evaluated dissimilar geometry translation recommendations from the literature. The use of an effective thermal conductivity for a representative orthogonal lattice of rectangular ligaments was compared to a porosity-matching technique of a similar lattice. Model accuracy was evaluated using experimental test data collected from a porous copper foam coldplate using deionized water as coolant. The compact heat exchanger testing facility which was designed and constructed for this investigation was shown to be capable of performing tests with coolant flow rates up to 300 mL/min and heat fluxes up to 290 W/cm2. The greatest technical challenge of the testing facility design proved to be the method of applying the heat flux across a 1 cm2 contact area. Based on the computational modeling results and experimental test data, porous foam modeling recommendations and porous foam coldplate design suggestions were generated.
    URI
    http://hdl.handle.net/1853/6944
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Mechanical Engineering Theses and Dissertations [4008]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology