• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coding and Information-Theoretic Aspects of Multiple Antenna Communication Systems

    Thumbnail
    View/Open
    fozunbal_majid_200412_phd.pdf (1.103Mb)
    Date
    2005-01-20
    Author
    Fozunbal, Majid
    Metadata
    Show full item record
    Abstract
    Future wireless networks will be required to transmit real-time multimedia data reliably with high speed and low latency. This demands new approaches to the design and analysis of wireless networks. In this context, multiple antenna architectures are a promising solution which provide wireless systems with a high degree of functionality, adaptability, capacity, and robustness. However, efficient use of these systems is possible only by solving a number of critical problems. In this dissertation, we focus on coding and information theoretic aspects of multiple antenna systems. Knowledge in these areas provides us with guidelines into analysis and design of systems, reveals inherent limitations, pinpoints problems and opportunities for improvement, and also allows for rigorous argument and justification of observations. We present novel results on multiple antenna communication systems with both theoretical and practical impacts. In the area of coding theory, performance limits and error bounds for space-time codes will be discussed, along with guidelines for systematic design of space-time codes in the presence of the channel correlation profile. In the area of information theory, a unified approach to the capacity analysis of multiple antenna channels will be discussed. We also present a novel partial ordering relation on fading channels that is helpful in information theoretic analysis of compound and non-stationary channels. The results of the dissertation can be generalized to multiple-user channels. This could lead to a solid understanding of fundamental limits of wireless systems and opportunities for opening new trends and paradigms for future generations of wireless networks.
    URI
    http://hdl.handle.net/1853/6972
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology