• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Zero-Emission Regional Aviation in Sweden

    Thumbnail
    View/Open
    Zero-Emission Regional Aviation in Sweden.pdf (1.128Mb)
    Date
    2022-11
    Author
    Sorrentino, Robert T.
    Parello, Romain C.
    Delage, Martin
    Justin, Cedric Y.
    Mavris, Dimitri N.
    Jouannet, Christopher
    Amadori, Kristian
    Metadata
    Show full item record
    Abstract
    Regional air operations, which can be defined as the transportation of passengers using smaller aircraft over short distances, have been overlooked in recent years by airlines focusing on high volume and profitable routes between large airports. Despite this shift of focus, the airport infrastructure still exists in many smaller communities between which demand for air travel exists. The emergence of new air vehicles designed for shorter routes could stimulate efficient and profitable operations, especially if they leverage currently underutilized and paid-for airports. However, new regional air operations need to be sustainable to be successful in a world striving for a carbon-neutral future, especially since air travel over short distances can be substituted by other means of transportation with a smaller environmental footprint such as cars, trains, or buses. Many different paths are envisioned to reach zero-emission goals. These range from technology advancements to new powertrain configurations, and from new transportation policies to new emission offsetting schemes. It is however not clear how these different paths interact and how solutions could be optimally combined. Analyses are therefore required to estimate future demand for air travel and to assess the feasibility of zero-emission regional aviation with the objective to support decision-making about viable and sustainable paths for new regional air operations. The developed modeling environment is implemented in Sweden and allows for an environmental assessment of various scenarios. Significant untapped demand is uncovered between smaller markets, and given fuel and energy consumption for these operations, it is likely that sustainable advanced regional air mobility will be possible in Sweden provided technology transitions can be made.
    URI
    http://hdl.handle.net/1853/69984
    Collections
    • Aerospace Systems Design Laboratory Publications [314]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology