• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extracting Signals and Graphical Models from Compressed Measurements

    Thumbnail
    View/Open
    ZHANG-DISSERTATION-2021.pdf (3.742Mb)
    Date
    2021-12-08
    Author
    Zhang, Hang
    Metadata
    Show full item record
    Abstract
    The thesis is to give an integrated approach to efficiently learn the interdependency relation among high dimensional signal components and reconstruct signals from observations collected in a linear sensing system, Broadly speaking, the research topics consists of three parts: (i) interdependency relation learning; (ii) sensing system design; and (iii) signal reconstruction. In the interdependency relation learning part, we considered both the parametric and non-parametric methods to learn the graphical structure under the noisy indirect measurements. In the sensing system design part, we introduced a density evolution framework to design sensing systems for compressive sensing for the first time. In the signal reconstruction part, we focused on the signal reconstruction with a given sensing system, which consists of three parts: signal reconstruction with inexact knowledge of the sensing system; signal reconstruction with the signal being contaminated by undesired noise; signal reconstruction with the signal belonging to a union of convex sets.
    URI
    http://hdl.handle.net/1853/70030
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23878]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology