• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Subgrid scale modeling for large eddy simulation of supercritical mixing and combustion

    Thumbnail
    View/Open
    UNNIKRISHNAN-DISSERTATION-2021.pdf (40.24Mb)
    Date
    2021-11-11
    Author
    Unnikrishnan, Umesh
    Metadata
    Show full item record
    Abstract
    Large eddy simulation (LES) is a widely used modeling and simulation technique in turbulent flow research. While the LES methodology and accompanying subgrid scale (SGS) modeling have been developed and applied over decades, primarily in the context of ideal gas conditions, their extension to complex multi-physics flows encountered in aerospace propulsion requires further refinement. In particular, the application of LES to turbulent flows at supercritical conditions presents several new modeling challenges and uncertainties. The scope of this dissertation is to investigate the theoretical LES formalism and SGS modeling framework for multi-species turbulent mixing and combustion at supercritical pressures. The goal is to identify the deficiencies with the current methodology and to establish a refined and consistent framework that accurately accounts for all the necessary physics. In this dissertation, a consistent theoretical formulation of the filtered governing equations for LES is derived. Direct numerical simulations (DNS) are performed for spatially evolving non-reacting and reacting mixing layers at supercritical pressures. The complete set of terms in the filtered equations are quantified and analyzed using the DNS datasets. Based on the analyses, two new groups of subgrid terms are identified as important quantities to account in the LES framework. Parametric analyses are performed as a function of the filter resolution to derive resolution considerations for practical LES applications. The performance and accuracies of two state-of-the-art subgrid modeling approaches for the traditional subgrid fluxes are assessed. The study demonstrates the better performance of scale-similarity based models over the eddy-viscosity based approaches. The study also reveals the deficiencies of conventional subgrid modeling approaches for LES of supercritical combustion. To address the additional modeling requirement for the filtered equation of state, novel subgrid modeling approaches are proposed. The performance of these models are tested and good improvements are demonstrated.
    URI
    http://hdl.handle.net/1853/70034
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology