• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predictive Demand Response Modeling for Logistic Systems Innovation and Optimization

    Thumbnail
    View/Open
    BAHRAMIBIDONI-DISSERTATION-2022.pdf (8.768Mb)
    Date
    2022-12-13
    Author
    Bahrami Bidoni, Zeynab
    Metadata
    Show full item record
    Abstract
    In the ever-increasing dynamics of global business markets, logistic systems must optimize the usage of all possible sources to continually innovate. Scenario-based demand prediction plays an important role in the effective economic operations and planning of logistics. However, many uncertainties and demand variability, which are associated with innovative changes, complicate demand forecasting and expose system operators to the risk of failing to meet demand. This dissertation presents new approaches to predictively explore how customer preferences will change and consequently demand would respond to the new setup of services caused by an innovative transformation of the logistic layout. The critical challenge is that the responses from customers in particular and demand in general to the innovative changes and corresponding adjustments are uncertain and unknown in practice, and there is no historical data to learn from and directly support the predictive model. In this dissertation, we are dealing with three different predictive demand response modeling approaches, jointly shaping a new methodological pathway. Chapter 1 provides a novel approach for predictive modeling probabilistic customer behavior over new service offers which are much faster than ever done before, based on the case of a large Chinese parcel-delivery service provider. Chapter 2 introduces an approach for predicting scenario-based erection-site demand schedules under uncertainty of disruptive events in construction projects whose logistics transformed from traditional to modular style, based on the case of a USA-based innovative leader in modular building production. For such a leader to advance in its logistics design innovations and associated capacity adjustments, and also to enhance its capability for taking more market share, it is crucial to estimate potential future demand for modular construction and corresponding probable projects in terms of their potential location, size, and characteristics. For this purpose, Chapter 3 introduces a methodological approach for estimating scenario-based future demand for modular construction projects to be implemented over the US metropolitan statistical areas.
    URI
    http://hdl.handle.net/1853/70196
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology