• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gaussian control barrier functions : A Gaussian process based approach to safety for robots

    Thumbnail
    View/Open
    KHAN-DISSERTATION-2022.pdf (12.91Mb)
    Date
    2022-12-16
    Author
    Khan, Mouhyemen
    Metadata
    Show full item record
    Abstract
    In recent years, the need for safety of autonomous and intelligent robots has increased. Today, as robots are being increasingly deployed in closer proximity to humans, there is an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or surgical robots. The objective of this thesis is to present a safety framework for dynamical systems that leverages tools from control theory and machine learning. More formally, the thesis presents a data-driven framework for designing safety function candidates which ensure properties of forward invariance. The potential benefits of the results presented in this thesis are expected to help applications such as safe exploration, collision avoidance problems, manipulation tasks, and planning, to name some. We utilize Gaussian processes (GP) to place a prior on the desired safety function candidate, which is to be utilized as a control barrier function (CBF). The resultant formulation is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety uncertainty, which former barrier function formulations did not consider. This is achieved by using robust posterior estimates from a GP where the posterior mean and variance serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe controllers by framing a convex optimization problem where the kernel-based representation of GPs allows computing the derivatives in closed-form analytically. Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we rigorously test our methods in hardware on a quadrotor platform. The platform used is a Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and detailed discussions on the hardware implementations which will be useful for large-scale deployment of the techniques presented in this dissertation.
    URI
    http://hdl.handle.net/1853/70205
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology