Multi-Fidelity Bayesian Optimization for Efficient Materials Design
Abstract
Materials design is a process of identifying compositions and structures to achieve
desirable properties. Usually, costly experiments or simulations are required to evaluate
the objective function for a design solution. Therefore, one of the major challenges is how
to reduce the cost associated with sampling and evaluating the objective. Bayesian
optimization is a new global optimization method which can increase the sampling
efficiency with the guidance of the surrogate of the objective. In this work, a new
acquisition function, called consequential improvement, is proposed for simultaneous
selection of the solution and fidelity level of sampling. With the new acquisition function,
the subsequent iteration is considered for potential selections at low-fidelity levels, because
evaluations at the highest fidelity level are usually required to provide reliable objective
values. To reduce the number of samples required to train the surrogate for molecular
design, a new recursive hierarchical similarity metric is proposed. The new similarity
metric quantifies the differences between molecules at multiple levels of hierarchy
simultaneously based on the connections between multiscale descriptions of the structures.
The new methodologies are demonstrated with simulation-based design of materials and
structures based on fully atomistic and coarse-grained molecular dynamics simulations,
and finite-element analysis. The new similarity metric is demonstrated in the design of
tactile sensors and biodegradable oligomers. The multi-fidelity Bayesian optimization
method is also illustrated with the multiscale design of a piezoelectric transducer by
concurrently optimizing the atomic composition of the aluminum titanium nitride ceramic
and the device’s porous microstructure at the micrometer scale.