Show simple item record

dc.contributor.authorChen, Jianen_US
dc.date.accessioned2005-09-16T15:00:10Z
dc.date.available2005-09-16T15:00:10Z
dc.date.issued2005-05-19en_US
dc.identifier.urihttp://hdl.handle.net/1853/7121
dc.description.abstractThe first part is a study of an ecological model with one herbivore and $N$ plants. The system has a new type of functional response due to the speculation that the plants compete with each other and have different levels of toxin which inhibit the herbivore's ability to eat up to a certain amount. We first derive the model mathematically and then investigate, both analytically and numerically, the possible dynamics for this model, including the bifurcation and chaos. We also discuss the conditions under which all the species can coexist. The second part is a study in the normal form theory. In particular, we study the relations between the normal forms and the first integrals in analytic vector fields. We are able to generalize one of Poincare's classical results on the nonexistence of first integrals in an autonomous system. Then in the space of 2n-dimensional analytic autonomous systems with exactly n resonances and n functionally independent first integrals, we obtain some results related to the convergence and generic divergence of the normalizations. Lastly we give a new proof of the necessary and sufficient conditions for a planar Hamiltonian system to have an isochronous center.en_US
dc.format.extent554255 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectFunctional responseen_US
dc.subjectNormal form
dc.subjectBifurcation
dc.titleBifurcations, Normal Forms and their Applicationsen_US
dc.typeDissertationen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMathematicsen_US
dc.description.advisorCommittee Chair: Yi, Yingfei; Committee Member: Chow, Shui-Nee; Committee Member: Dieci, Luca; Committee Member: Klausmeier, Christopher; Committee Member: Wang, Yangen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record