• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational Aspects of Game Theory and Microeconomics

    Thumbnail
    View/Open
    markakis_evangelos_200508_phd.pdf (445.0Kb)
    Date
    2005-07-14
    Author
    Markakis, Evangelos
    Metadata
    Show full item record
    Abstract
    The purpose of this thesis is to study algorithmic questions that arise in the context of game theory and microeconomics. In particular, we investigate the computational complexity of various economic solution concepts by using and advancing methodologies from the fields of combinatorial optimization and approximation algorithms. We first study the problem of allocating a set of indivisible goods to a set of agents, who express preferences over combinations of items through their utility functions. Several objectives have been considered in the economic literature in different contexts. In fair division theory, a desirable outcome is to minimize the envy or the envy-ratio between any pair of players. We use tools from the theory of linear and integer programming as well as combinatorics to derive new approximation algorithms and hardness results for various types of utility functions. A different objective that has been considered in the context of auctions, is to find an allocation that maximizes the social welfare, i.e., the total utility derived by the agents. We construct reductions from multi-prover proof systems to obtain inapproximability results, given standard assumptions for the utility functions of the agents. We then consider equilibrium concepts in games. We derive the first subexponential algorithm for computing approximate Nash equilibria in $2$-player noncooperative games and extend our result to multi-player games. We further propose a second algorithm based on solving polynomial equations over the reals. Both algorithms improve the previously known upper bounds on the complexity of the problem. Finally, we study game theoretic models that have been introduced recently to address incentive issues in Internet routing. A polynomial time algorithm is obtained for computing equilibria in such games, i.e., routing schemes and payoff allocations from which no subset of agents has an incentive to deviate. Our algorithm is based on linear programming duality theory. We also obtain generalizations when the agents have nonlinear utility functions.
    URI
    http://hdl.handle.net/1853/7173
    Collections
    • College of Computing Theses and Dissertations [1156]
    • Georgia Tech Theses and Dissertations [23403]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology